経済産業省における医療機器産業政策と産総研における医療機器開発について

産業技術総合研究所 健康工学研究部門 主任研究員 （もと 経済産業省 医療•福祉機器産業室 室長補佐）小阪 亮

目次

1．国内外の医療機器産業の動向

2．政府全体及び経済産業省における医療機器産業政策

3．オールジャパンでの医療機器開発
（1）世界最先端の医療機器の開発
（2）医工連携の推進：「医療機器開発支援ネットワーク」の構築
4．医療機器開発•製品化を円滑にするための環境整備
5．医療機器・サービスが一体となった国際展開の推進

医療機器の分類

日本の医療機器市場の動向

－我が国の医療機器市場規模は，平成16年以降，増加に転じ， 2 兆円超で推移。平成 26 年は，約2．8兆円となり，過去最大の市場規模。
－我が国の医療費は，平成 25 年度は 40.1 兆円。医療機器市場は，うち約 7% となっている。

日本の医療機器市場の構造

医療機器市場（約2．8兆円）のうち，金額ベースでは治療機器（カテーテル，ペースメーカー等）が 55% ，診断機器（内視鏡，CT，MRI等）が 22% を占める。一般的に治療機器 の成長率が高く，市場規模も大きい。しかしながら，治療機器は輸入比率が相対的に高い。

主な医療機器の外資系／日系世界シェア

（2014年世界市場規模）
－診断機器分野では一定の国際競争力を確保する一方，治療機器分野では国際競争力が弱い。

世界における医療機器市場の動向

－高齢化の進展や新興国の国際需要の拡大を受け，医療機器のグローバル市場は，拡大傾向。 （2014年時点で，約40兆円となり過去最大。）
－我が国の輸出額•輸入額は，いずれも増加傾向（対前年比で，輸出約 8% 増，輸入約 4% 増）。

医療機器イノベーシヨンの潮流

－昨今，既存自社製品の延長で無し新たな機器開発に関しては，リスクが高く，
大企業ではスピーディーな開発を行うことが困難。
－米国においては，大手企業が新製品を開発したベンチャー企業を買収し，当該大手企業が量産して販売するという流れが定着。自社開発だけに頼らないイノベーションシステムを構築。
ベンチャー企業サイドも，IPOよりも，大手への売却を出口の一つとして最重視。
－国立研究開発法人日本医療研究開発機構（AMED）において，基礎研究から実用化まで切れ目なし研究管理•支援を一体的に行うことにより，日本発の革新的な医薬品•医療機器等の創出に向けた研究開発を推進する。
－異業種参入により，ICT 等の技術革新も取り入れた革新的な医療機器・システムの開発を支援するため，医療機器開発支援ネリトワークの充実化，臨床現場•関係学会等との連携などの開発支援環境の整備を行う。また，革新的な医療機器•再生医療等製品の評価方法等を世界に先駆けて提案し，国際標準の獲得を図る。

－海外で日本の医療機関等が運営する現地医療機関（日本の医療拠点）の設立支援や，各国での人材育成•制度整備とパッケージ化した効果的な医療•介護サービ スや医療機器•医薬品等の販路開拓•案件組成支援，開発途上国等の二ーズを把握 した上での相手国の保健•医療の課題解決に向けた医療機器開発などの取組を行う。 また，海外における医療機器メーカーによるメンテナンス体制の構築•充実を推進する。

医療機器促進法に基づく医療機器基本計画を着実に実行するため，また医工連携による医療機器開発を促進すべく，AMEDを通じて，各省•専門支援機関（産総研 ，医療機器センター等）•地域支援機関•医療機関•学会等の連携による開発支援体制（医療機器開発支援ネットワーク）を強化し，我が国の高い技術力を生かし，医療機器の開発•事業化を加速。また，医療機器の承認審査の迅速化に向けた取組や，事業化人材•伴走コンサル人材の育成，国際標準化，知財強化を進める。

日本医療研究開発機構（AMED）の概要

日本医療研究開発機構（AMED）

－医療分野研究推進計画を踏まえた，医療分野の研究開発を促進するためのファンディング。
（1）各省における医療分野の研究開発予算を一元化
（2）基礎研究から実用化まで，一気通貫の支援
※平成 27 年 4 月 1 日設立。理事長：末松誠（前 慶應義塾大学医学部長）
平成 30 年度概算要求額：1，483億円 人員：300人程度（うち常勤102名）

経済産業省の主な取組（平成30年度概算要求額）

オールジャパンでの医療機器開発プロジェクト（93．5億円）オールジャパンでの医薬品創出プロジェクト（70．3億円）

○未来医療を実現する医療機器・システム研究開発事業
（48．0億円）
\bigcirc－医工連携事業化推進事業
（34．5億円）
○ロボット介護機器開発•標準化事業
（ 11.0 億円）

○次世代治療•診断実現のための創薬基盤技術開発 （70．3億円）
再生医療実現プロジェクト（40．0億円）
○再生医療の産業化に向けた評価基盤技術開発事業 （40．0億円）

医療機器産業重点5分野の技術開発

	概要	開発機器O例
1．手術支援 ロボット・システム	－世界一のロボット技術（RT）を医療分野に応用した機器・システム開発内視鏡手術ロボット，手術ナビゲーション・シミュレーション， インテリジエント手術室等	産業用ロボットの技術を活用した軟性内視鏡手術口 ボット －産業用ロボットで実績のある情報処理技術を活用し たスマート治療室
	－世界最先端技術を生かし，ものづくり力を結集した機器開発 人工心臓，人工関節，人工内耳等植えこみ型医療機器，歯科用インプラント等高機能材料	－3Dプンタタ技術により，細胞などを積み上げて血管骨等の生体臓器を作製するシステム －細胞シート積層技術を用いて，心臓壁などの立体組織を作成するシステム
3．低侵端治療	－患者の体力的負担を減らし，早期回復のニーズ対応放射線の動体追跡照射技術，血管内にカテーテルなど を導入するガイドワイヤー，放射線治療，血管內治療等	呼吸により動く臓器（肺等）に，放射線を照射する技術を応用した高精度な放射線治療装置 －脳活動の信号を読み取つて，機器や装置の制御に利用する技術を用いた，麻痺した運動機能の回復支援システム
4．イメージング （画係診断）	早期診断により医療の効率を向上，健康寿命の延伸 MRI，CT，PET，高機能内視鏡（周辺機器を含む）分子イメージング等	－微粒子化した造影剤を用いて，転移したがん細胞を検出しやすくするがん転移診断装置 －光学顕微鏡の画像処理技術を活用し，細胞を切り取らずに，がん細胞を検出するがん診断装置
5．在宅医療機器	- 高歯化社会の医療現場ニーズに対応 - 「小型化•軽量化」といつた日本の得意分野を生かす酸素濃棭装置，ポーダルル歯科治療器等	－現場のニーズに応じて，小型化•軽量化した機器を組み合わせることができる在宅訪問歯科診療の専用器材パッケージ －ウェアラブル機器から入手した血圧データと，ICT技術 を組み合わせた診療支援システム

経済産業省が推進する医療機器産業政策の全体像

市場開拓，
デザイン・コ切プト設計

開発•治験 製造・サービス供給 販売 マーケティグ

－世界最先端の医療機器開発

－產学官が連携し，最先端診断•治療システム開発推進 （未来医療を突現する医療機器・システム研究開発事業： 30年度概算要求頟 48.0 億円）
－開発•審査の円滑化に資する評価指標，開発ガイドラインの策定

－医工連携による医療機器開発

－ものづくり技術を有する企業•大学等と医療機関との連携を促進し，医療現場のニーズに応える機器開発•実用化
（医工連携事業化推進事業：30年度概算要求額 34．5億円）

－事業環境の整備

- 臨床ニーズを抽出するスキーム
- 医療機器の部材供給に関するガイドブック の策定•普及
－海外展開に向けた国際標準化の加速

－海外市場の獲得

－医療機器とサービスの一体的な展開
（医療技術・サービス拠点化促進）
（MEJ，JICA等と連携した支援体制）

- 医療機器開発支援ネリトワークによる支援
- 「伴走コンサル」として，開発段階に応じた切れ目ない支援を提供
- 開発機関を総動員し，ワンストツフで，医療現場のニーズ発掘や事業化（許認可，知財，眅路開拓， ファイナンス）等への支援を提供

未来医療を実現する医療機器・システム研究開発事業 （平成 30 年度概算要求額：48． 0 億円（ 43.8 億円））

－日本が強みを持つロボット技術や診断技術等をつルに活用し，重点分野（手術支援口ボ，人工組織•臓器，低侵襲治療，画像診断，在宅医療）を中心に，手術支援技術，早期に疾患を発見する診断装置や低侵襲の治療装置等，世界最先端の医療機器・システムを，各省連携で開発•実用化。
－具体的には，先端技術を有する企業•大学等がコンソーシアムを形成し，開発に比較的長期間を要し，開発費用 や開発リスクが高い医療機器の開発を進める。

《技術開発の事例》

スマート治療室
\checkmark 手術室内の各医療機器を接続し，患者•医療機器の情報を一元管理し て手術スタッフで共有，手術中の診断•治療を支援。
\checkmark 当該情報を，術後のフォローや医師の訓練等に活用。

軟性内視鏡手術システム
\checkmark 高度な口ボット技術を活用することで，医師が手術野を俯橄しながら，医師 の手足と協調した医療機器の操作 が可能に。
\checkmark 深部の病変に対して開腹が不要とな り，低侵襲の治療を実現。

高精度な放射線治療装置
\checkmark 呼吸等で常に動々臓器（肺等）に対して，がん部位を高精度に特定 することにより，がん細胞へ放射線を集中的に照射。

【参考】実施中の主な研究開発案件

運動機能の回復支援システム

○検出した脳波の状態に応じて
手足を動かすことで，
重度の麻痺からの回復を支援。
－回復の程度に応じて， リハビリ内容を自動的 に設定。

がんの低侵襲解析技術

○がんは，発生する組織やその性状により治療の難易度が左右され，発見の段階で原発巣からの転移が進んでいると治療は特に難しい。
○リンパ節等に転移した微小な がん細胞を対象に，最先端の イメージング（画像診断）技術 を活用し，発生組織や部位を低侵襲かつ高精度に特定，評価する技術を開発。

光学技術でがん細胞を可視化

I C Tを活用した診療支援技術

○医療分野へのI C T 技術の活用が進んできているもの の，収集した診療情報等を集計•分析して治療に活用 する取組は発展途上。
○新規デバイスと一体化した診療支援機器・システムを開発し，定量化された医療情報を臨床現場で利用可能とするシステムを開発。

立体バイオインプラント

 ～iPS細胞等を用いた立体組織•臓器の製造～○再生医療製品の実用化に向けて，バイオ3Dプリンタや細胞シート積層技術などの立体造形技術を用いて，骨や，血管 心臓などの立体組織•臓器を製造。

医療機器開発ガイドライン（手引き）の策定

－次世代•革新的な医療機器の承認審査に向けて，検査すべき評価項目や実験条件の予見可能性を高めるため，医療機器開発ガイドライン（手引き）を策定。
－具体的には，評価項目（安全性，有効性，品質，強度等）や実験条件などを設定し，企業等における医療機器の研究開発を支援。
－厚生労働省の次世代医療機器•再生医療等製品評価指標と，作成分野等で連携。

策定•公表した主なガイドライン	H28年度に公開したガイドライン
－DNAチップ（3件） ■ 人工心臓（1件） - ナビゲーション医療，トレーニングシステム（5件） - 人工関節，インプラント，積層造形（10件） ■ヒト細胞培養•加工•搬送装置（9件） ■コンピュータ，ソフトウェア（3件） －ロボット技術を用いた活動機能回復装置（1件） ■その他（2件） 34件策定（平成29年4月時点）	再生医療（ヒト細胞製造システム） ■「細胞加工に特化した工程資材の要求事項に関するガイドライン 2017 （手引き）」 ■「再生医療等製品の製造所における顕微鏡の設置と維持管理に関する ガイドライン2017（手引き）」 体内埋め込み型材料（積層造形医療機器） －「三次元積層造形技術を用いた歯科補綴装置の開発ガイドライン 2017 （手引き）」
	現在策定中の主なガイドライン
医療機器開発ガイドラインの公表 http：／／www．meti．go．jp／policy／mono info service／healthcare／report ir you fukushi．html 次世代医療機器•再生医療等製品評価指標として発出された通知 http：／／dmd．nihs．go．jp／jisedai／tsuuchi／index．html 医療機器開発かイドライン活用セミナーについて http：／／md－quidelines．pj．aist．go．jp／	体内埋め込み型材料（生体吸収性材料） 画像診断（近赤外イメージング検査システム） 在宅用医療機器（人工呼吸器） フスマート治療室 プラズマ応用技術（プラズマ処置技術）

医工連携事業化推進事業

（平成 30 年度概算要求額： 34 ． 5 億円（ 34.5 億円））

我が国の高度なものづくり技術を活用し，医療機関等との医工連携により行う，
医療現場のニーズに応える医療機器の開発•事業化を支援（29年度から補助事業）。

- AMEDを通じ，ものづくり中小企業，製販企業，医療機関等の共同体（コンソーシアム）に補助金交付。
- 医療機器開発関連経費だけでなく，治験経費，薬事相談経費等も支援の範囲。

医工連携開発事業化事業（開発•事業化支援）の成果事例

医療機器ベンチャーが国の支援制度活用，V C 資金調達，大手企業のM\＆A（買収）に より開発•上市加速化【（株Biomedical Solutions】

初期開発
機器のコンセプト発案，設計•試
作発，設計検証，Non－GLP
動物実験

実用化開発

非臨床試験，FIH（First In Human），治験

ベンチャー企業としてのEXIT （大手企業による買収）

株式会社JIMRO（大塚HD）によるM\＆A（買収）

開発製品：ステント型血栓除去デバイス（クラスIV）

独自に開発した特殊な構造のステントを用いて，血栓を除去する脳梗塞の治療機器を開発。末梢領域の治療も可能とする。
（参考）28年度医工連携事業化推進事業に，
「頭蓋内動脈狭窄治療ステント開発•事業化」採択

7テローム隹軘隹化隹

ステントを使って詰まった

医工連携開発事業化事業（開発•事業化支援）の成果事例

異業種新規参入で「第1種製眅業」，「クラス无治療幾器での承認し取得【森タカトリ】

胸腹水ろ過濃縮装置T－CART（クラスIII）
（25年度課題解決型医療機器等開発事業 （現•医工連携事業化推進事業）に採択。）
－産業機械（電機電子分野）から医療機器分野に新規参入（機械設計技術，制御技術，モーター等の技術等を活用）。

－徳島大学の臨床ニーズを元に，ガンや肝硬変に伴う胸水•腹水を効率的に処理（ろ過濃縮処理の自動化，治療時間短縮等）する装置を開発。
－本事業の伴走コンサル（専門家等との対面助言） を活用し，薬機法上の規制対応（PMDA承認申請等），知財対応等を行い，製造販売承認取得（28年8月）•上市。現在，改良機器を開発中。

18

医療機器開発支援ネットワーク

- 平成26年10月に，「医療機器開発支援ネットワーク」を立ち上げ。
- AMEDを事務局として，事務局サポート機関と73の地域支援機関に「ワンストップ窓口」を設置。
- 相談件数は約1，290件に達し，このうち，伴走コンサルは約450件。
- 異業種（電機電子•自動車部品•化学•光学•製薬等）から相談増。
- 地域支援機関と連携し，伴走コンサルの地方開催（秋田，仙台，群馬，つくば，京都，広島，鳥取等）も実施。
（平成29年9月30日時点）

主な地域支援機関
［北海道•東北地区】
○北海道立総合研究機構 ○青森県 ○いわて産業振興センター○秋田県 ○インテリジェント・コスモス研究機構 ○山形県産業技術振興機構 ○ふくしま医療機器産業推進機構

【近畿地区】

○ふくい産業支援センター
○滋賀県産業支援プラザ
○滋賀県産業支援がラザ
○京都手阪商工会議所
\bigcirc 先端医療振興財団
○奈良県地域産業振興センター ○わかやま産業振興財団

【中国地区】

○鳥取県産業振興機構 ○もねね産業振興財団 ○岡山県産業振興財団 ○ひろしま産業振興機構 ○山口県産業技術センター

伴走コンサル地方開催

【関東地区】
 ○つくば研究支援センター

○栃木県産業振セ興センター
○群馬県産業支援機構
○埼玉県産業振興公社
○葉県産業振興センター
○大田区産業振興協会 ○神奈川科学技術アカデミー ○にいがた産業創造機構 ○やまなし産業支援機構 ○長野県テクノ財団 \bigcirc 静岡産業振興協会

【中部地区】

○富山県新世紀産業機構 ○石川県産業創出支援機構 ○岐阜県研究開発財団 ○名古屋商工会議所 ○重県産業支援センター

（四国地区】

○とくしま産業振興機構
○かかわ産業支援財団 ○えひめ東予産業創造センター ○高知県産業振興センター
○福岡県 ○佐賀県地域産業支援センター
○熊本県 ○大分県 ○宮崎県 ○鹿児島県 ○沖縄県産業振興公社

伴走コンサル・相談受付の流れ

ステツプ 1

相談受付：ワンストップ 空口
www．med－device．jp／consulting／ －相談受付票作成

ステップ2

事前情報収集（事務局サポート機関）

- 相談内容の精査 ：テレビ会議•電話会嶬•対面
- カルテの作成

■個別課題を解決できる サービス等を紹介

ステップ3
1

倠定コンサル（初回）

－多様な専門家が対応
ステップ4

- 相談企業の二ーズや悩みを十分に聞く
- その上で，事業化に向けてディスカッション
- 相談企業の現状を整理（カルテ）
- 事業化に向けて企業が考えるべき事項を わかりやすく整理して提示（支援計画）
－担当コンサルタントを選定

■カルテ・支援計画を送付
■伴走コンサル結果の満足度を確認
－今後の対応を連絡

ステップ5

伴走コンサル（マイルストーンヒビュー）

- 事務局窓口が企業と相談の上曰程調整
- 相談企業の現状を確認（カルテ更新）
- 今後のロードマツプを確認（支援計画更新）

伴走コンサルにおける相談内容，企業規模

（1）相談內寥

- 「販路開拓」に関する相談が最も多い（30\％）
- 販路開拓：販売代理店に関する情報収集や海外市場への展開等
－承認申請：クラス分類（医療機器か非医療機器か の判断を含む），申請手続き等
－技術開発：技術や試作機の評価等

（2）企業規模

- 「中小企業」が最も多い（45\％）
- 大企業：相談件数は 25% 。特に，異業種（電機電子•自動車部品等）からの参入に関する相談。
－中小企業：自動車部品，精密加工等の企業から，主に事業戦略や技術開発の相談。
－ベンチャー：医療用ソフトウェア等の相談

伴走コンサルにおける機器の種類，相談企業の業種

（3）医療機器の種類

- 「治療機器』に関する相談が最も多い（31\％）
- 治療機器：呼吸式治療器，バルーンカテーテ ル，レーザー治療器，ステント等
－診断機器：遺伝子解析装置，脳波計，心電図計，電子聴診器，呼吸機能診断等
－その他 ：歯科のインプラント等

（4）業湩

－全相談のうち企業からの相談は8割強，残りは起業を見据えた大学等研究機関，支援機関
－相談企業のうち約3割は医療機器分野への新規参入企業
－28年度は素材系分野からの相談が増加

22

伴走コンサルの具体的な成果例

課題を整理し，FDA承認取得

日本発オリジナル血流画像化装置の海外展開 ソフトケア（有）
－FDAへの医療機器申請は初めてのため，効率的•効果的な申請準備の方法が判らなかった。
－FDA申請～承認プロセスの全体像を把握した上で，何をしなければならないか課題が明確になり，取り組 むべき課題に集中できた。
\rightarrow 効率的（申請から約半年）にFDA承認取得。

【製品概要】簡便かつ正確な血流画像化装置

血流画像化装置（LSFG－NAVI）
－非侵襲的に血流の様子を 2 次元マップで観察で き，誰でも血流動態を測定できる。
－全身循環状態を把握に応用可能であり，眼科だけ に留まらない。

事業戦略を再構築，早期上市を実現
「音のバリアフリー」を実現するスピーカーの開発
（株）サウンドファン
－加齢性難聴者にも聞こえやすいスピーカーを開発。医療機器として事業化を目指すべきか否かが判らなか った。

- 非医療機器での事業化を決定，早期上市を実現。
- 実績と検証データを積み上げた事で，新たな選択肢 （段階的な事業展開）に気づく事ができた。
\rightarrow 事業戦略の方向性を絞り込み，早期上市を実現。

【製品概要】広い場所でも明膫に音を伝えるスピーカー
－空港等広いスペースで遠く離れていても明瞭に聞こえる ため，災害時公共用としても有効。
－高齢者が多い場所（介護施設，病院等）での活用 を期待。
（0）SoundFun！ MIRAI SUPEAKER

伴走コンサルのその他の成果例

伴走コンサルの内容	伴走コンサルの成果
（1）自動車部品の中小企業	
規制に係る戦略を含め，今後検討す べき事項を整理•助言。	－伴走コンサルの助言内容を「有識者の意見」として経営陣 に説明することで，開発事業に対する経営陣の理解を得る ことができた。
（2）半導体製造装置分野の大企業	
研究開発の方向性について，市場性及び法規制の観点から助言。	クラス分類など医薬品医療機器法への対応方針が明確化された。 現在，地域支援機関と相談しつつ，承認申請の準備を進 めている。
（3）電機•電子分野の中小企業	
－市場性の観点から，非医療機器とし て進めることを助言。	- 事業戦略の方向性を絞ら込むことができた。 - 非医療機器での事業化を決定し，早期上市を実現。
（4）ベンチャー企業	
客観的に現状の課題点を整理し，検討すべき事項を助言。	- 目標とする市場を特定することができた。 - 現在，専門支援機関との相談を実施。その内容を踏まえ，今後，薬事戦略相談を実施予定。

ネットワークの取組（ハンドブックの作成，全国会議の開催）

「医療機器開発支援ハンドブック」の作成

支援機関の施策を一冊に集約。

MEDICのHPからダウンロード可能 http：／／www．med－device．jp	

《ハンドブックの内容》
－「医療機器開発•事業化の基礎」
医療機器開発産業の現状，参入パターン等
－「医療機器開発•事業化における課題解決のポイント」
市場の見極め，基本戦略の明確化など事業参入へのポイント

- 「医療機器開発支援ネットワークの活用法」
- 「医療機器開発支援ネットワーク・医療機器アイデア ボックスの活用事例」

「全国医療機器開発会議」の開催

－全国の地域支援機関や企業等に対して，関係府省•独法等の施策，医療機器開発に成功している企業等 の取組を共有する機会とし，これら企業や関係機関な どが交流する機会を提供。

- 主催：内閣府•経産省•厚労省•文科省。
- 毎年1月下旬に開催。
（本年は平成29年1月27日に開催，今年で3回目）

臨床ニーズを抽出するスキーム

－臨床現場のニーズを踏まえた医療機器の開発を加速すべく，（1）日頃の医療行為から生まれる改良 ニーズや（2）医療機関における高度かつ革新的な臨床ニーズを抽出
－抽出したニーズは，AMEDにおいて事業性を加味して練り上げ，支援事業や企業とのマッチングに繋げる。

26
「医療機器アイデアボックス」ウエブサイト画面

アイデアボックスの運用スキーム	
提供されたニースについては，専門家（医療従事者）が，ニースの受当性を評価し，評価コメント等 とともに公開します。	
＞公開にあたつては，まず本サイトに登録したコ す。その後，本サイトに登緑した開発企業へ	ネーター（地域支搝機関等）から先行公開しま ます。
くニーズ䢐録か	開まての流れ＞
Phase1 $=$－ス叹集～泙何（非公開）	Phase2 ニース公閏
Step1 Step2	Step3 Step4
＝－スの新	
＜平成29年度スケジユール＞	
Phase1＝－大収集	Phase2＝－大公明＊
（1）～2017年 4月中旬	2017年 7月上旬～
（2）～2017年 6月中旬	2017年 8月中旬～
（3）～2017年8月中旬	2017年 10月上旬～
（4）～2017年 10月中旬	2017年 12月上旬～
（5）～2017年 12月中旬	2018年 2月上旬～
（6）～2017年 2月中旬	2018年 4月上旬～（予走）
＊一般公開（Step4）の時䐓を表示	

臨床ニーズ（医療機器アイデアボックスにて公開）

医療従事者に登録頂いたニーズについては，複数の専門家（医療従事者）が，ニーズの妥当性等を評価。企業への橋渡しのニーズが高いと判断されたものを「医療機器アイデアボックス」にて公開。（現在67件公開）

例1）針を刺さむい血糖測定器がたしい

［現状】
刺突による経時的採血は患者に対して苦痛を伴う。
超高齢社会により自己血糖測定，インスリン管理が困
難な人が増加，またそのような患者に対する指導にも膨
大な労力が必要となっている。
【ニーズ】
痛みなく，誰でも簡単に血糖値測定器がほしい。

例3）㭵㖹鏡下で触診に代わる病変の位置決めを低コストかつ簡便に行うデバイスがほしい
 【現状】

近年主流の胸腔鏡手術は，ポート孔から処置具を胸腔内に挿入して行うため，術前マーキングを行う必要が あるが，より安全かつ確実な理想的なマーキング法は いまだ開発されていない。
【ニーズ】
肺の硬度を定量化して，正常組織とがん組織を簡便に判別したい。

例2）リード線のない心電図計測罣置がほしい

【現状】

急性期病院では重傷者入院や救急搬送のケースが
多く，心電図電極のリード線が治療に邪魔になること がある。またリード線を含めルート類が多いと患者のせ ん妄リスクが高まるとの報告もある。

【ニーズ】

非接触もしくは電極についたリード線が無い測定装置 とすることで上述のようなリスクを軽減したい。

例4）血管撮影における側面像を撮影する為の操作台がほしくい

【現状】

脊椎•脊髄血管障害の検査•治療では，非常に高い精度と繊細さが要求され，正面像，側面像を併せた考察 が必要。
【ニーズ】
側面像の撮影時に上肢を固定できる操作台がほしい。

製品評価サービス

- 医療機器の開発において，ユーザーである医療従事者の声を反映した製品開発が重要。
- 企業自身が医療従事者との関係を有していなくても，サービス提供機関（支援機関等）を通じて，開発に直接関係しない医療従事者の意見（開発各段階の評価情報）を収集し，企業ヘフィードバック。
－医療従事者のニーズに合致した製品開発を促進。
※平成29年度の製品評価サービスは，サービス料の一部負担のみで利用可能。
（詳しくは医療機器開発支援ネットワーク事務局もしくはポータルサイトMEDIC へお問い合わせ下さい。
http：／／www．med－device．jp／html／support／contact．html）

製品評価サービスの概略

ケーススタデイ教材開発

実証事業採択団体の「知見」を，医工連携に取り組む企業等に「教訓」として普及•浸透 ■ 採択団体が事業化を目指す上で直面した险路や解決への取組を一般化した「ケーススタデイ教材」に編集
■ 医療機器市場への新規参入を目指す企業や医工連携支援機関等が研修・セミナーで活用すること で知見浸透

実証事業授択団体（2015年7月末時点で全107件）の成菓を，医療機缉商業全体の知的資産として活用

「医療機器開発支援ネットワーク」に関する問い合わせ先

NEWS
2017年10月31日
2017年10月30日
2017年10月26日

地域における医療機器産業振興の取組（関東経済産業局の取組例）

地域病院

 －弁理士会 －自治体 －地方局 AMED1．臨床ニーズ発掘セミナー \Rightarrow 日本医師会と連携し，全国レベルで セミナーを実施。臨床ニーズを集約し， AMED，医療機器・ものづくり商談会等 で事業化を図る。
2．地域の臨床現場とのマッチング \Rightarrow 地域医療機関等における臨床ニーズ と医療機器メーカーのマツチング。

ニーズ具現化支援

3．医療機器・ものづくり商談会 \Rightarrow 医療機器メーカーとものづくり企業との マッチング
4．医工連携出会いの広場 \Rightarrow 医学系学会への出展・マッチング
5．医工連携人材の育成 \Rightarrow 産学連携による人材育成（信州大学 への講師派遣等）

- 自治体
- 産業支援機関
- 地域病院
- 大学医•工学部

製販企業
金融機関
－AMED
－伴走コンサル
－JETRO MEJ

地域における医療機器産業振興の取組（関東経済産業局の取組例）

日本医師会と連携した「臨床二ーズ発掘セミナー」～医師のアイディアを事業化に～

－先進的医療機器開発のためには，医師二ーズに合致した製品開発や，医師と機器の開発を担う事業者等が信頼関係に基づき，事業化を進めることが重要であることから，全国の臨床現場に眠るアイディア創出•事業者 との連携を促進するセミナーを全国で実施する。

1．全国医師会勤務医部会連絡協議会と連携したセミナー
全国の病院勤務医が集まる全国会議において，本事業の説明を行うとともに，企業展示を実施する。
平成29年10月21日（土）札幌グランドホテル
2．テーマ設定型 医師主導による医療機器開発のためのニーズ創出•事業化支援セミナー
開発テーマを設定の上，ニーズを有する医師，企業，大学等による医療機器開発のためのNW構築を支援するセミナーを実施する。

3．事業化支援集中ワークシヨップ

平成28年度及び29年度セミナー参加医師ニーズの内，有望案件について企業，専門家等を交えた事業化ワークショップを実施する平成29年11月下旬 日本医師会館

地域における医療機器産業振興の取組（関東経済産業局の取組例）

医療機器・ものづくり商談会～全国のものづくり企業の技術で医療機器開発～

－医療機器メーカーが有する医療機器開発•改良ニーズと，日本全国の優れたものづくり企業が有する技術ソリユー ションを結びつける，医療機器メーカーとものづくり企業とのマッチング会を実施。

全国規㮐

全国の自治体，産業支援機関を通じ てシーズを探索。

ニーズ説明会
自治体，コーディネー高訜成立案倠たくは
各種支援策を活用
ター等へニーズの詳

医㞠機間の部材供給の円滑化 ＜医療機器の部材供給に関するガイドブック＞

－医療機器分野への異業種からの参入や，部材供給を後押しするため，部材供給企業と医療機器 メーカーの双方が留意すべき事項について，ガイドブックを作成（平成23年3月）。
－医薬品医療器機法施行，QMSにおける医療機器製造販売業者による製造管理，品質管理体制の統括化等を踏まえ，改訂（平成29年1月）\rightarrow http：／／www．med－device．jp／pdf／buzai＿201701v1．pdf

部材供給がイドブックで取り扱す範围

［供給者】

部材供給企業（部材•加工）

【医療機器メーカー】
医療機器製造販売業者
医療機器製造業者

医療機器販売業者

医薬品医療機器法の規制範囲

ガイドブックのポイント

○部材供給企業は，医療機器メーカーに部材（医療機器以外）の供給を行う場合，医薬品医療機器法上の規制は適用範囲外。

○部材供給企業は，医療機器メーカーの仕様に基づいて部材を供給 した場合，供給した部材に欠陥が生じた場合でも，部材供給企業 に過失がない限り免責される（製造物責任法第4条第2号）。

○医療機器製造販売業者は，医薬品医療機器法により，医療機器 の品質や安全性等を担保することが求められており，医療機器に対する一義的な責任を負う。

○部材供給企業と医療機器メーカー間の契約書に関する主な留意事項。

- 部材の仕様
- 部材の変更または製造中止等の取り扱い
－リスクシェアリング
－紛争解決の手段

ふくしま医療機器開発支援センター
 （運営主体：一般財団法人ふくしま医療機器産業推進機構）

平成28年11月，医療機器の製品開発から事業化までを一体的に支援する我が国初の施設が福島県郡山市に開所。

（1）安全性評侕機能	（2）人材育成－洓練機能
国内関係法令や海外規格にも対応する，大型動物を用 いる生物学的安全性試験や，電気的•物理的•化学的安全性試験等	－実際の臨床現場に即した環境の提供による，医師，看護師の手技トレーニング －医療機器開発に携わる企業の医療機器の開発•改良の促進
（3）コンサルテイング・情幫発信機能	（4）マッチング機能
市場・ニーズの目利き，法令•規格のコンサルテイング・市販後調査等，医療機器分野への新規参入から事業化 までの段階•状況に合わせた総合的なサポート	＂ふくしま＂のものづくり企業の特徴を活かした，部材供給，量産•OEM供給等のコーディネート，各種展示会の開催

【センター外観】

安全で信頼される医療機器の開発及び適正 かつ安全な使用の促進を図り，
医療の安全確保と医療機器産業の発展へ貢献

○お問い合わせ先

（一財）ふくしま医療機器産業推進機構 TEL：024－954－4011（代表）
E－mail ：jimukyoku＠fmdipa．or．jp
URL：http：／／www．fmdipa．jp／index．php

ふくしま医療機器開発支援センターの安全性評価機能

GLP•ISO•AAALAC等の各認証を取得予定

GLP：医療品の安全性に関する非臨床試験の実施基準 ISO（17025）：製品管理•品質管理の基準

－電気的試験を行った場合のモデル料金（※参考見積）
OEMC試験（外部からの妨害波等による機器の耐性）
1）第2版：723，000円（4～5日）
2）第4版：938，000円（5～6日）
○安全性試験（漏れ電流測定，耐電圧など）
4，050，000円（1．5～2ヶ月）

AAALAC：国内実験動物管理の認証基準

電気•物理•化学的安全性試験

国内では数少ないX線遮蔽機能を有する電波暗室を備え るほか，各種環境試験機器，各種分析装置などにより，幅広い評価試験に対応。

【主要な試験項目】

- 電気•物性試験（放射性試験，機械的強度試験等）
- 環境試験（振動試験•防水試験等）
- 各種分析（有害化学物質指令対象物質分析等）

【主要な施設•設備】

- 電気安全性試験（X線遮蔽機付電波暗室）
- 環境試験（防水試験装置，耐塵試験装置）
- 化学分析機器

（電波暗室）＊イメージ画像

（IP試験装置）＊イメージ画像

医療機器・サービスが一体となった国際展開の推進

－経済産業省では，医療機器・サービス一体となった国際展開を推進するため，各省と連携しながら，日本の医療機関•医療機器メーカー等による事業性調査（FS調査）や実証調査を支援。
－これまで，特に
（1）我が国の医療機関等が運営する現地医療機関（日本式医療拠点）の設立や，
（2）人材育成や制度整備とパッケージ化した医療機器・サービスの効果的な海外展開
に向けたプロジェクト等を支援。
経済産業省が支援したプロジェクト（一例）

カンボジア救命救急センター設立事業 （日本式医療拠点の設立）

－北原国際病院（東京都八王子市）
が，カンボジア・プノンペンに
建設予定の日本式救命救急 センター。同センター開業後，
段階的に高機能病院や人材育成施設の整備も行う予定。
－病床数 40 床，脳神経外科や整形外科等を診療科とする医療機関。2014年12月に着工し， 2016年10月に開業。
※日揮，産業革新機構が出資，J I C A が融資。
－従来，カンボジア国内で治療を受けることが出来なかっ た人々（特に交通事故等による負傷者）に対して高度治療を提供。

インドネシア日本式内視鏡医療センター設立事業 （人材育成•制度整備とパッケージ化した展開）

－日本消化器内視鏡学会と

オリンパスが，インドネシアの
国立チプト病院（ジャカルタ）に，
日本式内視鏡医療センターを開設（2014年9月）。

－同センターで，インドネシア人医師への実技指導を実施。また，研修を修了した医師を，インドネシア消化器内視鏡学会が，最新の内視鏡医療に関する技能 を習得した医師として認定。
－現地での日本製内視鏡を用いたトレーニングを通じ，日本式内視鏡医療を普及•拡大させ，インドネシアで不足している内視鏡医の育成と日本製内視鏡の販路拡大を図る。

事業化•拠点化に結びついた主なプロジエクト例

○経済産業省が実施した実証調査事業を通じて，成果を上げつつあるプロジェクトが複数組成。
（1）医療拠点構築モデルの多様化：事業•投資リスクの適切な分担を図るプロジェクトモデルの構築。
（2）医療人材育成等を通じた販路開拓：ティーチングホスピタル等にトレーニングセンターを設立。

産総研における医療機器開発 （健康工学研究部門）

人材交流

[^0]https：／／unit．aist．go．jp／hri／information／seeds／

CAIST

人工臓器研究グループ

モノピボット軸受式遠心血液ポンプ

一点支持で数時間から数日使用

非接触支持で数週間から数ヶ月使用

産総研が実用化に貢献した体外循環用ポンプ

1991 工業技術院 機械研で血液ポンプの研究開始

日大•折目先生の資料を改変

メラ遠心ポンプ
HCF－MP23
遠心式体外循環用血液ポンプ （一般型•抗血栓性なし）保険償還価格：$¥ 49,400$

2011年5月より限定施設（臨床評価施設等）の試用開始

2011年3月：薬価収載

臨床評価終了 2011年10月より正式販売開始

AAIST

流体軸受を用いた非接触式血液ポンプ

流体軸受

ポンプ内の羽根車を自らの回転で発生する局所的な圧力で浮かせる軸受

利点：

○簡単な構造•低コスト
○長期耐久性•高信頼性
○静音駆動

欠点：

－赤血球破壊の可能性
（軸受隙間が狭いため高剪断）

「流体軸受の原理

ディスクは
数 $\mu \mathrm{m}$ 浮上

流体軸受を用いた非接触式血液ポンプ

最大揚程	$500 \mathrm{mmHg}(67 \mathrm{kPa})$
最大流量	$11 \mathrm{~L} / \mathrm{min}$
最大回転数	$5,000 \mathrm{rpm}$
スラスト陌間	$150 \mu \mathrm{~m}$
ラジアル隙間	$80 \mu \mathrm{~m}$
材料	アクリル・ポリカ

技術を社会へーIntegration for Innovation

血液適合性に問題のない $100 \mu \mathrm{~m}$ 以上の浮上を達成する技術を確立 \Rightarrow 安価で高性能の血液ポンプを実現

CAIST

ポンプ内の血栓可視化システム

（Sakota D，et al．，Artif Organs 2015）
HSi－300 Hyperspectral Imaging Systems

HSI system：Spectrophotometer＋Charged－Coupled Device（CCD）camera．

＞HSIは分光光度計を搭載したカメラを使用するイメージング法．
$>$ 近赤外光では血液ポンプ内部の情報を得ることが可能．
＞血液と血栓の異なる光学特性を画像化することで血栓の可視化が可能

ポンプ内の血栓可視化システム

血液术ンプ内の血栓の可視化に成功

AIST

曲がり管を利用した超小型血流量計

（Kosaka R，et al．，Artif Organs 2007）

内圧分布（Ansys CFX）流入口：0～7 L／minの定常流流出口： 100 mmHg
$($ 質量流量 $)=\frac{(\text { 曲がり部の圧力 })}{\text { 遠心力静圧 }}-\frac{\text { 直管部の圧力）}}{\text { 静圧 }}$

曲がり管を利用した超小型血流量計

質量流量
$=($ 歪ゲージA）- （歪ゲージB）

市販流量計とほぼ同程度の計測性能を実現することが出来た。

曲がり管を利用した流量計測技術 \Rightarrow 安価で高性能の血流量計を実現

安心•安全技術を備えた人工心臓

ご清聴ありがとうございました。

[^0]: 技術を社会へーIntegration for Innovation

